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ABSTRACT. In this paper, an efficient numerical method Haar wavelet has been presented for solving fractional partial 

differential equations. The fractional derivatives are described in Caputo sense. The approximate solution of some fractional 

partial differential equations namely Heat equation with lateral heat loss, KDV-type, Klien Gordon and KPP equation with 

initial –boundary conditions are considered. By using Operational matrix based on Haar wavelet technique, a differential 

equation is transformed into matrix form of order 2M x 2M which can be solved by using MATLAB and then compared with 

the exact solution. The suggested technique is simple and effective for solving fractional partial differential equations 

numerically. 
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1 INTRODUCTION  

Partial differential equations of arbitrary order (FPDEs) are 

standard form of classical order partial differential equations, 

extensively applied in the modeling of fluid flow problems, 

viscoelasticity, natural science, material science, engineering 

and many other fields. Fractional derivatives are an 

exceptional tool for the explanation of remembrance and 

inherited properties of a range of resources and processes [1-

3]. Presently no technique exists by which an exact solution 

for fractional partial differential equation can be obtained. On 

this basis numerical solutions are derived for the solution of 

fractional partial differential equations. Numerous existing 

numerical techniques for fractional order differential 

equations are finite difference scheme [20], Adomian 

decomposition technique [21], Homotopy perturbation 

method [22], Differential Transform Method [23], Simplest 

equation method [24], Reduced Differential Transform 

Method [25] and Homotopy Analysis Method [26]. 

Wavelets techniques are also used to find solutions of PDEs 

numerically. They are used to detect signals and processing of 

an image. In the start of the early 1990s, wavelet techniques 

have given much attention to solve PDEs [13]. During the 

preceding two decades this problem has attracted great 

concentration and frequent papers about this topic are 

available, for instances see [4-11]. Chen and Hsiao [27] were 

first to put Haar function into focus to solve a differential 

equation. They determined the operational matrix of integrals 

and applied Haar wavelet into dynamic models such as 

lumped and distributed-parameter models. 

Few researchers obtained solutions of fractional PDEs by 

Haar wavelet like Burger-Fisher and generalized Fisher 

equation [28], fractional Fokker Plank equation [29], 

fractional Benny equation [30]. The aim of the present work 

is to using Haar wavelets with operational matrix of fractional 

integration for numerical solution of the above mentioned 

FPDEs. The method is simple and accurate for small number  

of collocation points. The outline of this manuscript is as 

follows. In section 2, we describe some basic definition and 

properties of fractional calculus. In section 3, we describe 

Haar wavelets and its approximation. In Section 4, the 

proposed method and its implementation to solve the 

aforesaid problems is given. In section 5, the numerical 

examples are presented. Finally, a conclusion is drawn in 

section 6. 

2 FRACTIONAL CALCULUS 
 Numerous different definitions on fractional derivative are 

available. Some of these are Riemann-Liouville, Grunwald-

Letnikow, Caputo etc. The most frequently in use are the 

Riemann-Liouville and Caputo derivative. 

Definition 2.1 [19] Fractional Riemann-Liouville integral of a 

function f ∈ C μ , μ ≥ –1, is defined as
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Some of its properties are as follows. For f ∈ C μ, μ ≥ –1, α , β 

≥ 0, and 

 γ > 1: 
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 Definition 2.2 Fractional derivative of function f(x) in Caputo 

sense is defined as [19] 
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For m – 1 < α < m, m ∈ N,  x > 0,  f  ∈ C
m
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Some Properties 

1. [14] If α  ≥ 0 and  f ( t ) = ( t – a ) 
β
, m =   , then 

 

 
 

 
 

















 

1,

,,
1

1
,1,...,2,1,00

mand

ormandifat

mif

tfD
a

c

                                                                                   

(2.3) 

 

2. [14] Let α  > 0, m =    and  f  ∈ AC 
m 

[ a , b ], then 
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3 HAAR WAVELET  
For t ϵ [ 0, 1] , Haar wavelet functions are defined by [12] 

   

  ,1
0

th                                                     (3.1)        

 


























,0

15.0
1

5.0
,1

otherwise
m

k
t

m

k
m

k
t

m

k

th
i

      (3.2)

 

 Here i = 0, 1, 2, ……. m - 1, m = 2
j
, j ≥ 0, 0 ≤ k ≤  2

j
-1,  j and 

k corresponds to integer decomposition of the index i , i  = 2 
j
 

+ k - 1 , j  ≥ 0. Maximum of i is M = 2m =2
J
 
+1 

Function approximation 
A function u ( t ) can be extended into Haar wavelet by [12] 
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Approximating u(t) as piecewise constant from beginning to 

end in subintervals, Eq. (4.3) will be concluded at fixed terms 
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m is a power of 2. 

The matrix from of Eq. (3.4) is 
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Where the row vector u is the discrete form the function u(t). 

H is Haar wavelet matrix of order m = 2
j
, j= 0, 1, 2, ….. .J,  

i.e. 
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For arbitrary function u(x,t) L
2
 ( [0,1) x [0, 1) ), can be  

expanded into Haar series by [12] 
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Eq. (3.7) will be written as  

     tHUxHtxu
m

T

m
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In this research, we will apply wavelet collocation method to 

resolve the coefficients uij. These collocation points are 

shown in the following. 
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Discreting Eq.(3.8) by the step Eq. (3.9), we obtain the matrix 

form of Eq. (3.8) 
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We defined the m-square Haar matrix mxm  as [12]: 
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For example, when m = 8, the Haar matrix is expressed as 
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From the definition of Haar wavelet functions, we may know 

that H is an orthogonal matrix [12].  

Operational matrix of fractional order integration 

Here in this part, we may simply begin with the operational 

matrix of fractional integration of Haar wavelet [15] 

First defininig a set of m-term Block Pulse Functions as 

follows: 
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  where i = 0, 1, 2 ,…….  ( m – 1 ), 

The functions )( tbi are orthogonal. That is, 
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Since Haar wavelet functions are piecewise constant, 

extending it  into an m-term block pulse functions as 
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The Block Pulse operational matrix of the fractional order,  

integration 


F  proposed by Kilicman [10] is as follows: 
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Now, deriving the Haar wavelet operational matrix of the 

fractional order 

Taking, 
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where the square matrix of order m 

mxmP  is called the Haar 

wavelet operational matrix of the fractional order integration. 

Using Eqs. (3.16) and (3.17), we have. 
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From Eqs. (3.19) and (3.20) we get 
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Then, the Haar wavelet operational matrix of the fractional 

order integration 


mxmP  is given by [15] 
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Let,   = 0.5, m=8, the operational matrix 
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Similarly, we can find   for different values of α. This 

operational matrix of fractional order integration is used in 

the proposed method by which numerical solution of partial 

differential equations has been obtained for different values of 

α as  discussed in section 5. 

4 IMPLEMENTATION OF THE METHOD 
Consider a generalized fractional PDE  
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Applying on both sides of equation (5.2) via fractional 

integral I t


in variable t, and using p2 [14], we have 
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Substituting (5.3), (5.4) in (5.1), we get 
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on both sides of equation (5.5), we have 
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Incorporating the boundary conditions    ttw ,0 , we have 
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Substituting (5.7) in (5.6) we have  
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With the help of MATLAB command f solve, we can solve 

the unknown matrix ‘x’ which is known as the coefficient 

matrix. This coefficient matrix can be used to find the 

approximate solution of the above FPDEs given in section 1. 

  



22 ISSN: 1013-5316; CODEN: SINTE 8 Sci.Int.(Lahore),29(1),19-24,2017 

January-February 

5 NUMERICAL APPLICATIONS 
Example 5.1 Consider the heat equation 

   
    ,0,10,,,

,,
2

2














txtxhtxcw
x

txw
k

t

txw

 with ,1k   0,0  txhandc  [16].  

The initial and boundary conditions are given 

        tetwandtwxxw  1sin,10,0,sin0, where 

w(x,t) measures the temperature of the rod at time t,








t

denotes Caputo fractional derivative of order α , k  denotes 

thermal diffusivity that measures the ability of rod to conduct 

heat, c is a positive constant and h(x,t)  is called the heat 

source. For α =1, the equation reduces to classical heat 

equation.
 

The exact solution of the above problem for α = 1, is 

    textxw  sin, [16]. The approximate solutions for cases 

α = 0.25, 0.5, 0.75, 1.0 are obtained by the aforesaid method. 

Figure 5.1 shows the numerical and exact solutions for α = 1. 

The numerical results are also given in Table 5.1. It can be 

clearly seen that the solution obtained from fractional cases 

are approaching to classical heat equation. 

 

Table 5.1: Numerical solution of Heat equation for different values of α 
           Absolute 

      α= 0.25 α = 0.5 α= 0.75 α = 1        Error 

1/16 0.0517 0.0534 0.0558 0.0585 0.0587 2.0x10-4 

3/16 0.1389 0.1415 0.1446 0.1512 0.1545 3.3x10-3 

5/16,5/16 0.2074 0.2110 0.2146 0.2173 0.2249 7.6x10-3 

7/16,7/16 0.2584 0.2616 0.2640 0.2651 0.2735 8.4x10-3 

9/16,9/16 0.2929 0.2951 0.2959 0.2940 0.3039 9.9x10-3 

11/16,11/16 0.3118 0.3126 0.3119 0.3090 0.3191 1.0x10-2 

13/16,13/16 0.3153 0.3153 0.3143 0.3126 0.3222 9.6x10-3 

15/16,15/16 0.3039 0.3041 0.3047 0.3058 0.3157 9.9x10-3 

Example 5.2 Consider the fractional Klien-Gordon equation 

21),,(),(
),(),(

2

2














txhtxw
x

txw

t

txw
 

subject to  

3),1(0),0(,0
)0,(

0)0,( ttwtwand
t

xw
xw 




  

3333 66),( xttxtxtxhand 

 

The exact solution for α = 2 of eq. (5.2) is  

w(x,t) = x3t3[17].
 

Plots of numerical solution for different values of α are shown 

in Figure 5.2.

 

Example5.3Consider the non-homogeneous fractional third 

order dispersive partial differential equation [18] 

0,10),,(
),(),(

3

3














txtxf
x

txw

t

txw

     

(5.18) 

where   txtxtxf coscossinsin, 3   

subject to initial condition and time- dependent boundary 

conditions  

  xxw  sin0,  

      0,0,cos,0,0,0  twttwtw xxx  

The exact solution is   txtxw cossin,  [18]. The numerical 

results are also given in Table 5.2 for different values of α. It 

can be clearly seen that the solution obtained from fractional 

cases is approaching to the classical order equation. Figure 

5.3 shows a numerical and exact solution for α = 1.  

Table 5.3 Numerical and Exact solutions  for different  

values of α 
           Absolute 

      α= 0.5 α=0.75 α=0.95 α = 1        Error 

1/16,1/16 0.1947 0.1947 0.1947 0.1947 0.1947 0.0000 

3/16,3/16 0.5458 0.5459 0.5459 0.5459 0.5458 1.0x10-4 

5/16,5/16 0.7911 0.7912 0.7913 0.7913 0.7912 1.0x10-4 

7/16,7/16 0.8877 0.8883 0.8889 0.8891 0.8884 7.0x10-4 

9/16,9/16 0.8275 0.8290 0.8301 0.8303 0.8297 6.0x10-4 

11/16,11/16 0.6378 0.6409 0.6438 0.6446 0.6426 2.0x10-3 

13/16,13/16 0.3736 0.3790 0.3830 0.3838 0.3821 1.8x10-3 

15/16,15/16 0.1031 0.1113 0.1170 0.1179 0.1155 2.4x10-3 

Example 5.4 Consider the fractional KPP equation of the 

form [19] 

21,10),(
),(),(


















txw
x

txw

t

txw
 subject to 

some initial and boundary condition 

1
),0(

,1),0(
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





t

x

e
t

tw
tw

exxw
 

For α = 1, the exact solution of the problem is 

.),( xt exetxw  
 
Plots of numerical and exact solution for 

fractional values of α are shown in Figure 5.4 

 

CONCLUSION 

This manuscript presented numerical results of well known 

Heat equation with lateral heat loss, KDV-type and Klien 

Gordon and KPP equation by using Haar wavelets together 

with their operational matrix of fractional order integration. 

The results show the accuracy of the proposed method. Haar 

technique yields worthy results for small values of m (i.e 

m=8). For larger values of m (i.e m=16, m=32, m=64, 

m=128), the results are closer to real values. The method is 

very suitable for solving boundary value problems, since the 

boundary condition i taken report automatically. Also the  
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a) Numerical solution of Heat equation for α = 1 

b) Exact solution of Heat equation for α = 1 

 

Figure 5.1: Solutions for Heat Equation for α = 1 

a) Exact solution of Klien Gordon equation for α = 2 

b) Numerical solution of Klien-Gordon equation for  α = 1.75 

 

Figure 5.2 Solution of Klien-Gordon Equation for α = 2 

and α =1.75 

a) Numerical solution of KDV equation for α = 1 

 

b) Exact solution of KDVequation for α = 1 

 

Figure 5.3 Numerical and Exact solution of KDV-type Equation 

for α = 1 

anticipated method is easy in execution, simple and having 

low computation costs. It can be used for other kinds of 

fractional partial differential equations.  
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